메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술대회자료
저자정보
최다정 (평택대학교) 서진경 (평택대학교) 백주련 (평택대학교)
저널정보
한국컴퓨터정보학회 한국컴퓨터정보학회 학술발표논문집 2022년 한국컴퓨터정보학회 동계학술대회 논문집 제30권 제1호
발행연도
2022.1
수록면
35 - 38 (4page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
콘텐츠 기반 추천 시스템은 대표적인 추천 모델 방법 중 하나이다. 하지만 콘텐츠 기반 추천 시스템은 사용자 관련 메타데이터를 고려하기보다 내용 관련 메타데이터에만 의존하는 경향이 있다. 본 논문에서는 영화의 특징을 담고 있는 메타데이터를 이용해 추천 시스템을 간단히 구현하고, 추천한 영화와 사용자의 영화 평점을 이용해 추천 시스템의 정확도를 측정하였다. 영화 메타데이터 keywords, genres, cast의 개수를 늘려가며 정확도가 변화하는지 알아보았다. 메타데이터 각각의 개수가 증가하면 정확도도 향상할 것이라고 기대했으나 큰 차이가 나타나지 않았다. 모델 평가 결과, 미세한 차이지만 영화 메타데이터를 상위 3개씩 추출해 영화를 추천했을 때의 정확도가 1.2100318041248186으로 가장 높았다.

목차

요약
I. Introduction
II. The Proposed Scheme
III. Conclusions
REFERENCES

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0