메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
Xiao Liu (Tsinghua University) Decai Li (Tsinghua University)
저널정보
한국자기학회 Journal of Magnetics Journal of Magnetics Vol.27 No.1
발행연도
2022.3
수록면
65 - 71 (7page)
DOI
10.4283/JMAG.2022.27.1.065

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
In this research, we study four influence factors of the damping performance of ferrofluid dynamic vibration absorber, as well as predict and optimize the damping performance by machine learning method. The vibration absorber in our research is based on the second order buoyancy principle, which consists of a non-magnetic container, a small amount of ferrofluid and a permanent magnet. The effects of the initial amplitude, the cone angle of the cover, the thickness of the gasket and the mass of the ferrofluid on the damping performance are investigated by experiments. Based on the experiment data, we use BP neural network to establish a prediction model between the four influence factors and the damping performance. The prediction error of damping efficiency predicted by BP neural network is mainly within ± 0.4%. Meanwhile, the determination coefficient R² of test data is 0.96242. The both indicate that BP neural network has a good performance in predicting the damping efficiency. Furthermore, we use the search algorithm to find the optimized values of each influence factor through the prediction model and the high damping efficiency is confirmed by experiments. Our work introduces machine learning into the field of vibration absorber designing, which provides an innovative method for the rapid design of high efficiency vibration absorber.

목차

1. Introduction
2. Methods and Experiments
3. Results and Discussion
4. Conclusion
References

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0