메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
Geun-Ho Park (Hanwha Systems) Ji Hun Park (Pusan National University) Hyoung-Nam Kim (Pusan National University)
저널정보
한국전자파학회JEES Journal of Electromagnetic Engineering And Science Journal of Electromagnetic Engineering And Science Vol.22 No.1
발행연도
2022.1
수록면
21 - 27 (7page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
The constant false alarm rate (CFAR) has been widely used in radar systems to detect target echo signals because of its simplicity. With the recent development of different types of neural networks (NNs), NN architecture-based target detection methods are also being considered. Several studies related to NN-based target detectors have introduced multi-layer perceptron-based and convolutional neural network (CNN)-based structures. In this paper, we propose a CNN-based target detection method in frequency modulation (FM)-band passive coherent location (PCL). We improved the detection performance using a maxpooling layer and a Hadamard division layer, which are parallelly placed with a CNN layer. Moreover, in our method there is no need to determine the specific cell configuration (e.g., cell under test, reference cells, and guard cells) because the proposed method obtains the trained kernels by end-to-end learning. We show that the trained kernels help in the extraction of either signal or noise components. Through the simulations, we also prove that the proposed method can yield an improved receiver operating characteristic compared to that of a cell-averaging CFAR detector for FM-band PCL in a homogeneous environment.

목차

Abstract
I. INTRODUCTION
II. LAYER ARCHITECTURE
III. NETWORK TRAINING
IV. SIMULATION RESULTS
V. CONCLUSION
REFERENCES

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0