메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
왕택보 (한양대) 김장순 (한양대) 함남혁 (한양사이버대) 김재준 (한양대)
저널정보
대한건축학회 대한건축학회논문집 大韓建築學會論文集 第38卷 第4號(通卷 第402號)
발행연도
2022.4
수록면
217 - 228 (12page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
Safety management of construction projects have a significant impact on the construction project’s schedule and the control carried out on site. Current site safety monitoring methods are highly dependent on manual labor; human errors can occur through missing content. This study aims to resolve these issues by applying machine learning visual detection algorithms to identify unsafe behaviors of workers at construction sites, to enhance external monitoring of workers and to relatively reduce the occurrence of safety accidents. A proposed method combines an object detection algorithm and spatial localization relationship definition. Only the machinery and workers at the construction site need to be accurately detected and the definition of spatial location relationship can be used to identify dangerous behaviors. A monitoring network framework suitable for this study was constructed with the environmental characteristics and image features of a construction site. The machines and workers were detected from construction images based on the Faster R-CNN algorithm for a computer to obtain the visual detection data from the construction site. Three spatial concepts were defined to determine the position relationships of machines and workers in these images. The detected location information of machines and workers at the construction site were combined and presented in a visualized form. Based on the results of this research, it confirmed that the method and performance were suitable for construction site safety management, which is expected to contribute to the speed, level of accuracy and risk warning with the application of automated progress monitoring methods.

목차

Abstract
1. 서론
2. 이론적 고찰
3. 모델 구축
4. Faster R-CNN 모형 검증 결과 및 분석
5. 결론 및 향후 연구 진행 방향
REFERENCES

참고문헌 (54)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2022-540-001127123