메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
Lamen Sryh (Elmergib University) John Forth (The University of Leeds)
저널정보
한국콘크리트학회 International Journal of Concrete Structures and Materials International Journal of Concrete Structures and Materials Vol.16 No.3
발행연도
2022.5
수록면
323 - 334 (12page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
This paper presents the results of an investigation into the long-term flexural behaviour of cracked reinforced recycled aggregate concrete (RAC) beams. Washed construction and demolition wastes (CDW) with a maximum size of 20 ㎜ were used as the coarse recycled aggregate. The main variable in the research was the replacement ratio of recycled aggregate. Specimens with 0%, 50% and 100% recycled aggregate were cast and tested. The experimental results showed that samples with an increased amount of recycled aggregate had significantly reduced strength and a noticeable increase in both short-term and long-term deflection of RAC beams over equivalent normal concrete (NC) beams. Increased levels of RA resulted in greater creep and shrinkage of RAC and greater long-term loss of tension stiffening in RAC reinforced tension specimens. Prediction of long-term deflections using Eurocode 2, even after incorporating the experimental concrete properties within the Code method, underestimated the experimental deflections of the RAC beams. However, by modifying the tension stiffening factor, β used in Eurocode 2, deflections were predicted to within approximately 1%. From this investigation, it is recommended that the factor β be reduced from 0.5 (for NC) to 0.4 (for RAC @50% replacement) and 0.3 (for RAC @100% replacement).

목차

Abstract
1. Introduction
2. Background
3. Experimental Programme
4. Results and Discussion
5. Analytical Investigation
6. Conclusions
References

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0