메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
최형규 (Pai Chai University) 강아름 (Pai Chai University)
저널정보
한국컴퓨터정보학회 한국컴퓨터정보학회논문지 한국컴퓨터정보학회 논문지 제27권 제5호(통권 제218호)
발행연도
2022.5
수록면
149 - 156 (8page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
최근 전 세계적으로 사용되는 Microsoft Office 파일에 악성코드를 삽입하는 문서형 악성코드 사례가 증가하고 있다. 문서형 악성코드는 문서 내에 악성코드를 인코딩하여 숨기는 경우가 많기 때문에 백신 프로그램을 쉽게 우회할 수 있다. 이러한 문서형 악성코드를 탐지하기 위해 먼저 Microsoft Office 파일의 형식인 OLE(Object Linking and Embedding) 파일의 구조를 분석했다. Microsoft Office에서 지원하는 기능인 VBA(Visual Basic for Applications) 매크로에 외부 프로그램을 실행시키는 쉘코드, 외부 URL에서 파일을 다운받는 URL 관련 코드 등 다수의 악성코드가 삽입된 것을 확인했다. 문서형 악성코드에서 반복적으로 등장하는 키워드 354개를 선정하였고, 각 키워드가 본문에 등장하는 횟수를 feature 로 정의했다. SVM, naïve Bayes, logistic regression, random forest 알고리즘으로 머신러닝을 수행하였으며, 각각 0.994, 0.659, 0.995, 0.998의 정확도를 보였다.

목차

Abstract
요약
Ⅰ. Introduction
Ⅱ. Preliminaries
Ⅲ. The Proposed Scheme
Ⅳ. Experiment Results
Ⅴ. Conclusions
REFERENCES

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0