메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
장유진 (울산과학기술원) 유재준 (울산과학기술원) 홍헬렌 (서울여자대학교)
저널정보
한국컴퓨터그래픽스학회 컴퓨터그래픽스학회논문지 컴퓨터그래픽스학회논문지 제28권 제2호
발행연도
2022.6
수록면
11 - 19 (9page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
최근 의료영상의 발전에 따라 의료 영상 생성에 대한 다양한 연구가 제안되고 있는데, 이와 관련하여 생성된 의료 영상의 품질과 다양성을 정확하게 평가하는 것이 중요해지고 있다. 생성된 의료 영상을 평가하는 방법으로는 전문가의 시각적 튜링 테스트(visual turing test), 특징 분포 시각화, IS, FID를 통한 정량적 평가를 통해 평가하고 있으나 의료 영상을 품질(fidelity)과 다양성(diversity) 측면에서 정량적으로 평가 하는 방법은 거의 이루어지고 있지 않다. 본 논문에서는 DCGAN과 PGGAN 생성 모델을 통해 비소세포폐암 환자의 흉부 CT 데이터 셋을 학습하여 영상을 생성하고, 이를 품질(fidelity)과 다양성(diversity) 측면에서 두 생성 모델의 성능을 평가한다. 1차원 점수 기반 평가방법인 IS, FID와 2차원 점수 기반 평가방법인 Precision 및 Recall, 개선된 Precision 및 Recall을 통해 성능을 정량적으로 평가하고, 의료영상에서의 각 평가방법들의 특징과 한계점에 대해서도 분석한다.

목차

요약
Abstract
1. 서론
2. 생성영상 성능 평가 방법
3. 실험 및 결과분석
4. 결론
References

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0