메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
심지우 (메디씽큐) 우희조 (한화시스템) 김윤환 (우성철강산업) 김응태 (한국공학대학교)
저널정보
한국방송·미디어공학회 방송공학회논문지 방송공학회논문지 제27권 제3호
발행연도
2022.5
수록면
391 - 401 (11page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

이 논문의 연구 히스토리 (2)

초록· 키워드

오류제보하기
최근 딥러닝 기반의 객체 검출 및 인식 연구가 발전해가면서 산업 및 실생활에 적용되는 범위가 넓어지고 있다. 건설 분야에도 딥러닝 기반의 시스템이 도입되고 있지만 아직은 미온적이다. 건설 도면에서 자재 산출이 수작업으로 이뤄지고 있어 많은 소요시간과 부정확한 적산 결과로 잘못된 물량산출의 거래가 생길 수 있다. 이를 해결하기 위해서 빠르고 정확한 자동 도면 인식시스템이 필요하다. 따라서 본 논문은 건설도면 내 철강 자재를 검출하고 인식하는 인공지능기반 자동 도면 인식 적산 시스템을 제안한다. 빠른 속도의 YOLOv4 기반에 소형 객체 검출성능을 향상하기 위한 복제 방식의 데이터 증강기법과 공간집중 모듈을 적용하였다. 검출한 철강 자재 영역을 문자 인식한 결과를 토대로 철강 자재를 적산한다. 실험 결과 제안한 방식은 기존 YOLOv4 대비 정확도와 정밀도를 각각 1.8%, 16% 증가시켰다. 제안된 방식의 Precision은 0.938, Recall은 1, AP<SUB>0.5</SUB>는 99.4%, AP<SUB>0.5 : 0.95</SUB> 68.8%의 향상된 결과를 얻었다. 문자 인식은 기존 데이터를 사용한 인식률 75.6%에 비해 건설도면에 사용되는 폰트에 맞는 데이터 세트를 구성하여 학습한 결과 99.9%의 인식률을 얻었다. 한 이미지 당 평균 소요시간은 검출 단계는 0.013초, 문자 인식은 0.65초, 적산 단계는 0.16초로 총 0.84초의 결과를 얻었다.

목차

요약
Abstract
Ⅰ. 서론
Ⅱ. 제안하는 건설도면 인식시스템
Ⅲ. 데이터 세트 구성
Ⅳ. 모의실험 결과
Ⅴ. 결론
참고문헌 (References)

참고문헌 (15)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0