메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
Linsheng Fan (Xi’an Jiaotong University)
저널정보
대한환경공학회 Environmental Engineering Research Environmental Engineering Research 제28권 제1호
발행연도
2023.2
수록면
1 - 11 (11page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
Reasonably and effectively formulating the best route for urban waste transportation vehicle is particularly important for realizing low carbon and environmental protection of Green China construction concept. However, the current path planning method has shortcomings such as local optimization. In order to solve this problem, this paper aims at low carbon and environmental protection construction needs and proposes a routing optimization method of waste transportation vehicles based on improved ant colony algorithm. Firstly, the mathematical model of Vehicle Routing Problem (VRP) is constructed by considering transportation distance and carbon emissions cost. Then, network parameters in traditional ant colony algorithm are combined and optimized to realize self-adaptive update in the whole cycle. Furthermore, the neighborhood algorithm is used to iteratively optimize improved algorithm to avoid the defects of local optimization when solving VRP problem. Finally, the simulation results based on an actual dataset in North China show that the proposed method can achieve efficient and accurate optimal routing optimization for complex samples, and its solution stability index is P<SUB>best</SUB> is 0.87 and the average deviation is V<SUB>ar</SUB> is 0.011, the lowest distribution cost after optimization is about 3,080 yuan, which are better than the comparison methods.

목차

ABSTRACT
1. Introduction
2. Problem Description and Model Construction
3. Routing Optimization of Waste Transportation Vehicles Based on Improved Ant Colony Algorithm
4. Case Study and Verification
5. Conclusions
References

참고문헌 (25)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2022-539-001345139