메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술대회자료
저자정보
황주효 (창원대학교) 진교홍 (창원대학교)
저널정보
한국정보통신학회 한국정보통신학회 종합학술대회 논문집 한국정보통신학회 2022년도 춘계종합학술대회 논문집 제26권 제1호
발행연도
2022.5
수록면
104 - 107 (4page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
오토인코더 딥러닝 모델은 이상 데이터도 정상 데이터로 복원하는 능력이 우수하여 이상탐지에 적절하지 못한 경우가 발생한다. 그리고 데이터의 일부를 가린(마스킹) 후 가린 데이터를 복원하는 방식인 Inpainting 방식은 잡음이 많은 이미지에 대해서는 복원능력이 떨어지는 문제점을 가지고 있다. 본 논문에서는 MLP-Mixer 모델을 수정·개선하여 이미지를 일정 비율로 마스킹하고 마스킹된 이미지의 압축된 정보를 모델에 전달해 이미지를 재구성하는 방식을 사용하였다. MVTec AD 데이터 셋의 정상 데이터로 학습한 모델을 구축한 뒤, 정상과 이상 이미지를 각각 입력하여 재구성 오류를 구하고 이를 통해 이상탐지를 수행하였다. 성능 평가 겨로가 제안된 방식이 기존의 방식에 비해 이상탐지 성능이 우수한 것으로 나타났다.

목차

요약
ABSTRACT
Ⅰ. 서론
Ⅱ. Inpainting을 이용한 이상탐지
Ⅲ. 성능 평가
Ⅳ. 결론
References

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2022-004-001357139