메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
Tua Halomoan Harahap (Universitas Muhammadiyah Sumatera Utara) Hikee Altaee (Ahl Al Bayt University) Paitoon Chetthamrongchai (Kasetsart University) Andrej P. Peressypkin (Belgorod State University) Anis Siti Nurrohkayati (Universitas Muhammadiyah Kalimantan Timur) Vo Hoang Ca (Ho Chi Minh City Open University) Huynh Tan Hoi (Ho Chi Minh City Open University) John William Grimaldo Guerrero (Universidad de la Costa) M. Kavitha (Saveetha University)
저널정보
대한산업공학회 Industrial Engineering & Management Systems Industrial Engineering & Management Systems Vol.21 No.2
발행연도
2022.6
수록면
303 - 312 (10page)
DOI
10.7232/iems.2022.21.2.303

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
In this study, a problem of scheduling shipping lines for a container supply chain is addressed in order to minimize the costs of charging ships and the cost of maintaining the inventory of empty containers in the port by considering the time window of the port and the amount of fuel. This is a hard-NP problem and cannot be solved on a large scale with precise methods in a logical time. Therefore, to solve and optimize the model, a meta-innovative algorithm, a genetic algorithm, has been used. Also, to increase the effectiveness of the genetic algorithm, the parameters of the algorithm are adjusted using the Taguchi method. Finally, a number of problems have been solved to show the performance of this algorithm and its computational results have been compared with the results obtained from GAMS software. The study’s results demonstrate that the efficiency of displacement inside ports and fuel price on the overall costs, the optimal number of ships utilized, and the optimal scheduling table.

목차

ABSTRACT
1. INTRODUCTION
2. RESEARCH BACKGROUND
3. PROPOSED MATHEMATICAL MODEL
4. THE PROPOSED GA SOLUTION METHOD
5. INITIAL SOLUTION GENERATION
6. COMPUTATIONAL RESULTS
7. CONCLUSION AND SUGGESTIONS
REFERENCES

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2022-530-001519858