메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
Mohammad Sadegh Barkhordari (Amirkabir University of Technology) Leonardo M. Massone (University of Chile)
저널정보
한국콘크리트학회 International Journal of Concrete Structures and Materials International Journal of Concrete Structures and Materials Vol.16 No.4
발행연도
2022.7
수록면
431 - 448 (18page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
Reinforced concrete structural walls (RCSWs) are one of the most efficient lateral force-resisting systems used in buildings, providing sufficient strength, stiffness, and deformation capacities to withstand the forces generated during earthquake ground motions. Identifying the failure mode of the RCSWs is a critical task that can assist engineers and designers in choosing appropriate retrofitting solutions. This study evaluates the efficiency of three ensemble deep neural network models, including the model averaging ensemble, weighted average ensemble, and integrated stacking ensemble for predicting the failure mode of the RCSWs. The ensemble deep neural network models are compared against previous studies that used traditional well-known ensemble models (AdaBoost, XGBoost, LightGBM, CatBoost) and traditional machine learning methods (Naïve Bayes, K-Nearest Neighbors, Decision Tree, and Random Forest). The weighted average ensemble model is proposed as the best-suited prediction model for identifying the failure mode since it has the highest accuracy, precision, and recall among the alternative models. In addition, since complex and advanced machine learning-based models are commonly referred to as black-box, the SHapley Additive exPlanation method is also used to interpret the model workflow and illustrate the importance and contribution of the components that impact determining the failure mode of the RCSWs.

목차

Abstract
1 Introduction
2 Method and Material
3 Results and Discussion
4 Conclusion
References

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0