메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
심종화 (Korea University) 이지은 (Korea University) 황인준 (Korea University)
저널정보
한국전기전자학회 전기전자학회논문지 전기전자학회논문지 제26권 제2호
발행연도
2022.6
수록면
176 - 185 (10page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
데이터 증강이란 다양한 데이터 변환 및 왜곡을 통해 데이터셋의 크기와 품질을 개선하는 기법으로, 기계학습 모델의 과적합 문제를 해결하기 위한 대표적인 접근법이다. 그러나 심층학습 이미지 생성 모델인 GAN 기반 모델에서 데이터 증강을 적용하면 생성된 이미지에 데이터 변환과 왜곡이 반영되는 증강 누출 문제가 발생하여 생성 이미지의 품질이 하락한다. 이러한 문제를 해결하기 위해 본 논문에서는 데이터 증강의 종류와 수에 관계없이 증강 누출을 방지하는 기법을 제안한다. 증강 누출의 발생 조건을 분석하였으며, 보조적인 데이터 증강 작업 분류기를 GAN 모델에 적용하여 증강 누출을 방지하였다. 정성적 정량적 평가를 통해 제안된 기법을 적용하면 증강 누출이 발생하지 않음을 보이고 추가적으로 생성 이미지의 품질을 향상시키며 기존 기법과 비교하여 발전된 성능을 보임을 입증하였다.

목차

Abstract
요약
Ⅰ. 서론
Ⅱ. 관련 연구
Ⅲ. 이론
Ⅳ. 실험 결과
Ⅴ. 결론 및 향후 방향
References

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2022-056-001604084