메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
Sang-Soo Park (Hanyang University) Ki-Seok Chung (Hanyang University)
저널정보
Korean Institute of Information Scientists and Engineers Journal of Computing Science and Engineering Journal of Computing Science and Engineering Vol.16 No.2
발행연도
2022.6
수록면
105 - 112 (8page)
DOI
10.5626/JCSE.2022.16.2.105

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
Convolutional neural network (CNN) has been adopted in various areas. Using graphics processing unit (GPU), speed improvement can be achieved on CNN, and many studies have proposed such acceleration methods. However, parallelizing the CNN on GPU is not straightforward because there are irregular characteristics in generating output feature maps in typical CNN models. In this paper, we propose a method that maximizes the utilization of GPU by modifying convolution combinations of a well-known CNN network, LeNet-5. Our regularized implementation on a heterogeneous system has achieved an improvement of up to 37.26 times in convolution and sub-sampling layers. Further, an energy consumption reduction of up to 26.40 times is achieved.

목차

Abstract
I. INTRODUCTION
II. CONVOLUTIONAL NEURAL NETWORK
III. OPENCL AND CUDA
IV. DUMMY OPERATION FOR REGULAR GPU PARALLELISM
IV. EXPERIMENTS AND DISCUSSIONS
IV. CONCLUSION
REFERENCES

참고문헌 (12)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0