메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
김경수 (Sungkyunkwan University) 이재인 (Sungkyunkwan University) 곽석우 (Sungkyunkwan University) 강원율 (Institute of Vehicle Engineering) 신대영 (Korea Institute of Industrial Technology) 황성호 (Sungkyunkwan University)
저널정보
유공압건설기계학회 드라이브·컨트롤 드라이브·컨트롤 Vol.19 No.3
발행연도
2022.9
수록면
9 - 15 (7page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

이 논문의 연구 히스토리 (2)

초록· 키워드

오류제보하기
This paper proposes a method for constructing and verifying datasets used in deep learning technology, to prevent safety accidents in automated construction machinery or autonomous vehicles. Although open datasets for developing image recognition technologies are challenging to meet requirements desired by users, this study proposes the interface of virtual simulators to facilitate the creation of training datasets desired by users. The pixel-level training image dataset was verified by creating scenarios, including various road types and objects in a virtual environment. Detecting an object from an image may interfere with the accurate path determination due to occlusion areas covered by another object. Thus, we construct a database, for developing an occlusion area detection algorithm in a virtual environment. Additionally, we present the possibility of its use as a deep learning dataset to calculate a grid map, that enables path search considering occlusion areas. Custom datasets are built using the RDBMS system.

목차

Abstract
1. 서론
2. 가상 환경 구성
3. 데이터베이스 검증
4. 결론
References

참고문헌 (0)

참고문헌 신청

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0