메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
최도진 (창원대학교) 오영호 (충북대학교) 복경수 (원광대학교) 유재수 (충북대학교)
저널정보
한국콘텐츠학회 한국콘텐츠학회논문지 한국콘텐츠학회논문지 제22권 제8호
발행연도
2022.8
수록면
33 - 43 (11page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

이 논문의 연구 히스토리 (9)

초록· 키워드

오류제보하기
지식 그래프 및 단백질 상호 작용과 같은 실제 데이터에서 개체들과 개체들의 관계 및 구조를 나타내기 위해 레이블 그래프를 사용한다. IT의 급속한 발전과 데이터의 폭발적인 증가로 사용자에게 관심 있는 정보를 제공하기 위한 서브 그래프 매칭 기술이 필요하다. 본 논문은 레이블의 의미적 유사성과 그래프 구조 차이를 고려한 근사 Top-k 서브 그래프 매칭 기법을 제안한다. 제안하는 기법은 레이블 의미적 유사도를 고려하기 위하여 FastText을 활용한 학습 모델을 이용한다. 레이블 간 의미적 유사도를 미리 계산한 LSG(Label Similarity Graph)를 통해 처리 속도의 효율을 높인다. LSG를 통해 레이블이 정확하게 일치해야 확장이 가능한 기존 연구의 한계를 해결한다. 2-hop까지 탐색을 수행함으로써 질의 그래프에 대한 구조적 유사성을 지원한다. 매칭된 서브 그래프는 유사도 값 기반으로 Top-k 결과를 제공한다. 제안하는 기법의 우수성을 보이기 위하여 다양한 성능평가를 수행한다.

목차

요약
Abstract
Ⅰ. 서론
Ⅱ. 관련 연구
Ⅲ. 제안하는 근사 Top-k 레이블 서브그래프 매칭 기법
Ⅳ. 성능평가
Ⅴ. 결론
참고문헌

참고문헌 (0)

참고문헌 신청

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0