메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술대회자료
저자정보
박채림 (한국해양대학교) 이광일 (한국해양대학교) 조석제 (한국해양대학교)
저널정보
대한전자공학회 대한전자공학회 학술대회 2022년도 대한전자공학회 하계종합학술대회 논문집
발행연도
2022.6
수록면
841 - 844 (4page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
Estimating an accurate depth map from an image is of great significance in many tasks such as 3D object detection and extraction. In particular, it is an essential task for autonomous vehicles and plays an important role in computer vision. In this paper, we use the Vision transformer(ViT) to automatically focus the objects in the image, then estimate the depth map and perform semantic segmentation. ViT is a model that applies transformer to vision tasks, and can be fine-tuned in small tasks and can produce better results that CNN structures with fewer resources.

목차

Abstract
Ⅰ. 서론
Ⅱ. 관심 물체 깊이 맵 추정
Ⅲ. 실험 및 고찰
Ⅳ. 결론 및 향후 계획
참고문헌

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2022-569-001558067