메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
Xiaolei Song (Kunming University of Science and Technology) Meihong Liu (Kunming University of Science and Technology) Jingyao Yang (Kunming University of Science and Technology)
저널정보
한국유체기계학회 International Journal of Fluid Machinery and Systems International Journal of Fluid Machinery and Systems Vol.15 No.3
발행연도
2022.9
수록면
329 - 343 (15page)
DOI
10.5293/IJFMS.2022.15.3.329

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
This paper presented a formula for calculating the resistance coefficient of porous medium model of brush seals considering the effect of gas compressibility. Firstly, the 2-D tube bank model is used to calculate the axial resistance coefficient of brush seals. Secondly, the feasibility of the method is validated according to the existing experiment results. The validation results show that this formula is effective for brush seals. Lastly, the pressure distribution and leakage rate of the test brush seal are analyzed. With the presented porous medium model, the pressure drop through the bristle is computed, and the effect of groove of the back plate is addressed. The pressure drop is mainly concentrated on the downstream side of the bristle pack. The groove in the back plate can keep the pressure balance of the bristles back, causing the recovering of the pressure in the last row of bristles. The leakage rate of porous medium model is higher than the 2-d tube bank model, because the 2-D tube bank model only considers the leakage rate of the zone of the fence height. The rotation speed has a little effect on the reduction of the leakage rate.

목차

Abstract
1. Introduction
2. Physical model, theoretical model and the formula of resistance coefficients
3. Numerical method and mesh generation
4. Results and analysis
5. Conclusion
References

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0