메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술대회자료
저자정보
김영원 (국방대학교) 이수진 (국방대학교)
저널정보
한국컴퓨터정보학회 한국컴퓨터정보학회 학술발표논문집 2022년 한국컴퓨터정보학회 하계학술대회 논문집 제30권 2호
발행연도
2022.7
수록면
251 - 254 (4page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
본 논문은 XGBoost 알고리즘 기반의 침입탐지모델의 성능을 향상하기 위한 스케일링(scaling) 및 특성선택(feature selection) 기법을 제안한다. 머신러닝 모델 개발 중 전처리 단계에서 스케일링 및 특성선택을 수행하면 데이터세트의 조건수가 감소하여 모델의 성능을 향상할 수 있다. 각 과정별로 다양한 기법이 있지만 기존의 연구에서는 이러한 기법들을 적용한 결과를 비교·분석하지 않고 특정 기법을 적용한 결과만을 나열하였고 스케일링 및 특성선택에 대해 최적의 조합은 제시하지 못하였다. 따라서 본 논문에서는 다양한 전처리 기법들의 적용결과를 비교하고 최적의 조합을 제안한다. 또한 기존의 연구들이 특정 데이터세트에만 적용 가능한 전처리 기법을 제안하는데 비해 본 논문은 다양한 데이터세트에 대해 공통적으로 적용 가능한 전처리 기법을 제안함으로써 제안 기법의 범용성과 실세계 적용 가능성을 증명한다.

목차

요약
Ⅰ. Introduction
Ⅱ. Preliminaries
Ⅲ. The Proposed Scheme
Ⅳ. Conclusions
REFERENCES

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0