메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
Santosh Kumar Sahu (VIT-AP University) P. S. Rama Sreekanth (VIT-AP University)
저널정보
한국고분자학회 폴리머 폴리머 제46권 제5호
발행연도
2022.9
수록면
614 - 620 (7page)
DOI
10.7317/pk.2022.46.5.614

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
The mechanical performance of the nanocomposite depends on the processing conditions of the samples. Therefore a predictive model is essential to proceed the combination of processing conditions into account, for accurately predicting the mechanical properties is a critical requirement in manufacturing industries. The current investigation explores the prediction of mechanical properties of high-density polyethylene (HDPE)-based nano-diamond nanocomposite (i.e., HDPE/0.1 ND) using an artificial neural network (ANN) model under various processing conditions of temperature and pressure. A 2-10-2 (2 input, 10 hidden and 2 output layer) neural network model with Levenberg–Marquardt algorithm is developed to predict Young"s modulus and Hardness of HDPE/0.1 ND nanocomposite. The model accurately predicted Young"s modulus and hardness with a correlation coefficient of more than 0.99. The root means square error (r.m.s) of experimental vs. predicted value is minimal, confirming the proposed ANN model"s high reliability and accuracy.

목차

Abstract
Introduction
Experimental
Results and Discussion
Conclusions
References

참고문헌 (27)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0