메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
강성안 (동아대학교) 김소희 (동아대학교) 류민호 (동아대학교)
저널정보
한국산업정보학회 한국산업정보학회논문지 한국산업정보학회논문지 제27권 제5호
발행연도
2022.10
수록면
73 - 82 (10page)

이용수

DBpia Top 10%동일한 주제분류 기준으로
최근 2년간 이용수 순으로 정렬했을 때
해당 논문이 위치하는 상위 비율을 의미합니다.
표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
고혈압과 같은 만성질환은 발병의 원인은 다양한 요인들이 복합적으로 작용하기 때문에 생애주기에 따라 차별화된 관리가 필요하다. 본 연구는 머신러닝을 이용해 고혈압 발병에 영향을 미치는 요인들의 생애주기별로 차이를 분석한다. 이를 위해, 질병관리청의 국민건강영양조사 데이터에 대한 전처리 및 변수 선택 과정을 거쳐 총 35개의 변수를 활용했다. 분석결과, 트리기반 머신러닝 모델 중 XGBoost가 중년과 노년 모두 예측 성능이 높은 모델로 나타났다. 변수중요도를 통해 도출된 생애주기별 고혈압 위험요인을 살펴보면 중년의 경우 개인특성 요인, 유전적 요인, 영양섭취 요인이 고혈압 위험요인으로 나타났고, 노년의 경우 영양섭취 요인, 식생활 요인, 생활습관 요인이 고혈압 위험요인으로 도출되었다. 본 연구 결과는 생애주기별 고혈압 관리에 유용한 기초자료로 사용될 수 있을 것으로 기대된다.

목차

요약
Abstract
1. 서론
2. 이론적 배경
3. 데이터 및 연구 방법
4. 분석결과
5. 결론
References

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2023-530-000152157