메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
이우행 (Korea University) 최수연 (Korea University)
저널정보
한국정보통신학회 한국정보통신학회논문지 한국정보통신학회논문지 제26권 제10호
발행연도
2022.10
수록면
1,441 - 1,446 (6page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
현대인들은 음식 레시피에 대한 다양한 정보들을 인터넷이나 소셜 미디어 등에서 매우 쉽게 접할 수 있게 되었다. 음식 레시피를 제공하는 공급량이 많아지면서 범람하는 정보 안에서 사용자들이 각자에 맞는 레시피를 찾기에는 수고로움이 따르게 된다. 이처럼 사용자들의 요구사항을 반영하여 정보를 제공할 필요성이 높아졌고, 음식 레시피와 요리 추천에 관련 연구가 활발해지고 있다. 또한, 이를 활용한 인터넷, 영상 및 어플리케이션 시장 역시 급속도로 활성화되고 있다. 본 연구에서는 음식 레시피 사용자들의 관점에서 레시피를 분류하기 위하여 사용자의 리뷰 데이터를 비지도학습인 K-평균 군집화 기법을 적용하였으며, 이를 통해 “음식 레시피 분류 모델”을 도출하였다. 그 결과 특정 목적, 조리 단계 등 많은 사용자들이 필요한 정보를 포함한 총 25개의 군집으로 분류하였다.

목차

요약
ABSTRACT
Ⅰ. 서론
Ⅱ. 본론
Ⅲ. 결론
References

참고문헌 (8)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0