메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
박혜진 (Chung-Ang University) 곽상신 (Chung-Ang University)
저널정보
대한전기학회 전기학회논문지 전기학회논문지 제71권 제11호
발행연도
2022.11
수록면
1,614 - 1,623 (10page)
DOI
10.5370/KIEE.2022.71.11.1614

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
In this paper, the Remaining Useful Life (RUL) of the electrolytic capacitor is estimated through the amount of change in capacitance and ESR. RUL is predicted by the conventional model and the amount of change in capacitance and ESR according to the operating time. This paper supplements the shortcomings of the conventional model that calculates the endpoint of life according to the operating conditions of the system. Therefore, the purpose of this text is to calculate the endpoint considering the aging state and speed of the capacitor. In order to confirm the degree of aging over time, the accelerated aging experiment of capacitors was conducted under two conditions of temperature and voltage charge/discharge stress. And capacitor state parameters, Capacitance and ESR, were measured. After predicting the endpoint through the conventional model, the error with the actual measured experimental value is predicted through data fitting. As a result, both types of aging showed high accuracy when data with a large degree of aging was used. In addition, the higher the tendency of the error between the calculated value of the conventional model and the actual value of the experiment, the higher the estimation accuracy. Therefore, in this paper, when applied to the algorithm proposed for voltage charging and discharging aging rather than temperature aging, it was confirmed that the estimation performance was superior to that of the conventional model estimation value.

목차

Abstract
1. 서론
2. 전해 커패시터 가속 노화 실험
3. 기존 커패시터 수명 추정 모델
4. 제안된 RUL 추정 알고리즘
5. Conclusion
References

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0