메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
이재윤 (서울대학교) 박지수 (한국청소년정책연구원)
저널정보
한국아동학회 아동학회지 아동학회지 제43권 제4호
발행연도
2022.11
수록면
499 - 510 (14page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
Objectives: With the advances in digital technologies, adolescents are more likely to engage in multiple types of delinquent behaviors; however, few studies have considered various types of delinquencies with a multidimensional approach. Therefore, this study aimed to identify the latent groups based on various delinquencies and examine latent groups’ predictors using machine learning and multidimensional approaches.
Methods: Using nationally representative data (N = 8,210; male 52.17%), a latent class analysis was conducted to identify latent groups based on 10 delinquent behaviors self-reported by adolescents. A random forest analysis was then employed to predict latent groups using 53 predictors including demographic (6 items), personal (44 items), and environmental levels (3 items). The Mplus program was used for latent class analysis, and the R version 4.0.5 program was used for random forest analysis.
Results: Three latent groups were identified and categorized as “high online delinquency” (3.2%), “drink/media delinquency” (26.8%), and “low delinquency” (70.0%). Random forest analysis found adolescents’ perception of harmful substances was the most important variable predicting the delinquent groups. Partial dependence plots showed the higher the interest in harmful substances, the lower the ability to respond to the harmful substances; the higher the access to harmful environment, the lower the grade; and the lower the autonomy control ability, the more likely the classification as a high delinquency group.
Conclusion: This study classified three latent groups while considering the detailed types of delinquencies. The study found the prominent predictors using machine learning and multidimensional approaches to suggest useful delinquency prevention programs.

목차

Introduction
Methods
Results
Discussion
References
참고문헌

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0