메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
Zhang Leihong (University of Shanghai for Science and Technology) Wang Yang (University of Shanghai for Science and Technology) Ye Hualong (University of Shanghai for Science and Technology) Xu Runchu (University of Shanghai for Science and Technology) Zhang Dawei (University of Shanghai for Science and Technology)
저널정보
한국광학회 Current Optics and Photonics Current Optics and Photonics Vol.5 No.6
발행연도
2021.12
수록면
686 - 698 (13page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
A camouflaged encryption scheme based on Hadamard matrix and ghost imaging is proposed. In the process of the encryption, an orthogonal matrix is used as the projection pattern of ghost imaging to improve the definition of the reconstructed images. The ciphertext of the secret image is constrained to the camouflaged image. The key of the camouflaged image is obtained by the method of sparse decomposition by principal component orthogonal basis and the constrained ciphertext. The information of the secret image is hidden into the information of the camouflaged image which can improve the security of the system. In the decryption process, the authorized user needs to extract the key of the secret image according to the obtained random sequences. The real encrypted information can be obtained. Otherwise, the obtained image is the camouflaged image. In order to verify the feasibility, security and robustness of the encryption system, binary images and gray-scale images are selected for simulation and experiment. The results show that the proposed encryption system simplifies the calculation process, and also improves the definition of the reconstructed images and the security of the encryption system.

목차

Ⅰ. INTRODUCTION
Ⅱ. METHODS
Ⅲ. ENCRYPTION METHOD
Ⅳ. NUMERICAL SIMULATION
Ⅴ. EXPERIMENTS
Ⅵ. CONCLUSION
REFERENCES

참고문헌 (35)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0