메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술대회자료
저자정보
김다솔 (서울과학기술대학교) 이계민 (서울과학기술대학교)
저널정보
한국방송·미디어공학회 한국방송미디어공학회 학술발표대회 논문집 한국방송·미디어공학회 2022 추계학술대회
발행연도
2022.11
수록면
258 - 261 (4page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
최근 딥러닝 기술이 발전하면서 이미지를 설명하는 캡션을 생성하는 모델 또한 발전하였다. 하지만 기존 이미지 캡션 모델은 대다수 영어로 구현되어있어 영어로 캡션을 생성하게 된다. 따라서 한국어 캡션을 생성하기 위해서는 영어 이미지 캡션 결과를 한국어로 번역하는 과정이 필요하다는 문제가 있다. 이에 본 연구에서는 기존의 이미지 캡션 모델을 이용하여 한국어 캡션을 직접 생성하는 모델을 만들고자 한다. 이를 위해 이미지 캡션 모델 중 잘 알려진 Show, Attend and Tell 모델을 이용하였다. 학습에는 MS-COCO 데이터의 한국어 캡션 데이터셋을 이용하였다. 한국어 형태소 분석기를 이용하여 토큰을 만들고 캡션 모델을 재학습하여 한국어 캡션을 생성할 수 있었다. 만들어진 한국어 이미지 캡션 모델은 BLEU 스코어를 사용하여 평가하였다. 이때 BLEU 스코어를 사용하여 생성된 한국어 캡션과 영어 캡션의 성능을 평가함에 있어서 언어의 차이에 인한 결과 차이가 발생할 수 있으므로, 영어 이미지 캡션 생성 모델의 출력을 한국어로 번역하여 같은 언어로 모델을 평가한 후 최종 성능을 비교하였다. 평가 결과 한국어 이미지 캡션 생성 모델이 영어 이미지 캡션 생성 모델을 한국어로 번역한 결과보다 좋은 BLEU 스코어를 갖는 것을 확인할 수 있었다.

목차

요약
1. 서론
2. 모델 및 방법
3. 실험 데이터
4. 실험 및 결과
5. 결론
참고문헌

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0