메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
정영훈 (Dankook University) 김대원 (Dankook University)
저널정보
한국컴퓨터정보학회 한국컴퓨터정보학회논문지 한국컴퓨터정보학회 논문지 제27권 제12호(통권 제225호)
발행연도
2022.12
수록면
29 - 40 (12page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

이 논문의 연구 히스토리 (3)

초록· 키워드

오류제보하기
본 논문에서는 딥러닝 기법의 하나인 Mask R-CNN과 랜덤포레스트 분류기를 이용해 당뇨병성 망막병증의 병리학적인 특징을 검출하고 분석하여 자동 진단하는 시스템을 연구하였다. 당뇨병성 망막병증은 특수장비로 촬영한 안저영상을 통해 진단할 수 있는데 밝기, 색조 및 명암은 장치에 따라 다를 수 있으며 안과 전문의의 의료적 판단을 도울 인공지능을 이용한 자동진단 시스템 연구와 개발이 가능하다. 이 시스템은 미세혈관류와 망막출혈을 Mask R-CNN 기법으로 검출하고, 후처리 과정을 거쳐 랜덤포레스트 분류기를 이용하여 안구의 정상과 비정상 상태를 진단한다. Mask R-CNN 알고리즘의 검출 성능 향상을 위해 이미지 증강 작업을 실시하여 학습을 진행하였으며 검출 정확도 측정을 위한 평가지표로는 다이스 유사계수와 Mean Accuracy를 사용하였다. 비교군으로는 Faster R-CNN 기법을 사용하였고 본 연구를 통한 검출 성능은 평균 90%의 다이스 계수를 통한 정확도를 나타내었으며 Mean Accuracy의 경우 91% 정확도의 검출 성능을 보였다. 검출된 병리증상을 토대로 랜덤포레스트 분류기를 학습하여 당뇨병성 망막 병증을 진단한 경우 99%의 정확도를 보였다.

목차

Abstract
요약
I. Introduction
II. Related Works
III. Classification of Diabetic Retinopathy using Mask R-CNN and Random Forest Classifier
IV. Experiment and Results
V. Comparison and Discussion
VI. Conclusions
REFERENCES

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2023-004-000290091