메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술대회자료
저자정보
최형태 (포항공과대학교) 김정훈 (포항공과대학교)
저널정보
대한전자공학회 대한전자공학회 학술대회 2022년도 대한전자공학회 추계학술대회 논문집
발행연도
2022.11
수록면
259 - 262 (4page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
This paper proposes a machine-learning-based algorithm for anomaly forecasting for power network systems. By considering the complex voltages of the network as components of state vector, the state forecasting algorithm is introduced based on recurrent neural network. An anomaly detection algorithm is also provided by the classification algorithm based on the robust random cut forest. By combining those two algorithms, we propose an anomaly forecasting algorithm and evaluate its validity with a numerical example.

목차

Abstract
I. 서론
II. 전력 네트워크의 이상 예측 문제
Ⅲ. 머신러닝 기반 이상 예측 알고리즘
Ⅳ. 수치 예제
V. 결론
참고문헌

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0