메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
최승완 (Saeron S&I) 김광수 (Hanbat National University) 곽수영 (Hanbat National University)
저널정보
한국전기전자학회 전기전자학회논문지 전기전자학회논문지 제26권 제4호
발행연도
2022.12
수록면
22 - 29 (8page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

이 논문의 연구 히스토리 (2)

초록· 키워드

오류제보하기
특정 분야의 특허출원수는 기술의 수명주기 및 산업의 활성화 정도와 밀접한 관계를 가지고 있다. 따라서 사전에 사업을 준비하는 기업들과 미래 유망 기술을 초기 단계에서 선발하여 투자하고자 하는 정부 기관들은 미래의 특허 출원수 예측에 대해 큰 관심을 가지고 있다. 본 논문에서는 시계열 데이터에 적합한 RNN의 기법 중 하나인 양방향 LSTM 기법을 이용하여 기존 예측 방법들보다 정확도를 높이는 방법을 제안한다. 5개 분야의 대한민국 특허 출원 데이터에 대해서 제안된 방법은 기존에 사용되던 확산 모델 중 하나인 Bass 모델과 비교하여 평균 절대 백분율 오차(MAPE)의 값이 약 16퍼센트 향상된 결과를 보여준다.

목차

Abstract
요약
Ⅰ. 서론
Ⅱ. 양방향 LSTM을 이용한 특허출원 예측
Ⅲ. 실험
Ⅳ. 결론
References

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2023-056-000303362