메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
장동준 (Gangneung-Wonju National University) 권민우 (Gangneung-Wonju National University)
저널정보
한국전기전자학회 전기전자학회논문지 전기전자학회논문지 제26권 제4호
발행연도
2022.12
수록면
110 - 115 (6page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
최근 인간의 뇌를 모방한 스파이킹 뉴럴 네트워크(SNNs)의 뉴로모픽(Neuromorphic) 시스템이 주목을 받고 있다. 뉴로모픽 기술은 인지 응용과 처리 과정에서 속도가 빠르고 전력 소모가 적다는 장점이 있다. SNNs 기반의 저항성 랜덤 엑세스 메모리(RRAM) 은 병렬 연산을 위한 가장 효율적인 구조이며 스파이크 타이밍 종속 가소성(STDP)의 점진적인 스위칭 동작을 수행한다. 시냅스 소자 동작으로서의 RRAM은 저 전력 프로세싱과 다양한 메모리 상태를 표현한다. 하지만, RRAM 소자의 통합은 높은 스위칭 전압 및 전류를 유발하여 높은 전력 소비를 초래한다. RRAM의 동작 전압을 낮추기 위해서는 스위칭 레이어와 금속 전극의 신소재를 개발하는 것이 중요하다. 본 연구에서는 스위칭 전압을 낮추기 위해 전기적, 기계적 특성이 우수한 단일 벽 탄소나노튜브(SWCNTs)를 갖는 (Metal/Al₂O₃/HfO<SUB>x</SUB>/SWCNTs/N+silicon, MOCS)라는 최적화된 새로운 구조를 제안하였다. 따라서 SWCNTs 기반 멤리스터의 점진적인 스위칭 동작 및 저 전력 I/V 곡선의 향상을 보여준다.

목차

Abstract
요약
Ⅰ. 서론
Ⅱ. 본론
Ⅲ. 실험
Ⅳ. 결론
References

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2023-056-000303488