메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
Hyeonjin Eom (Korea Institute of Industrial Technology) Seunghwan Ahn (Korea Institute of Industrial Technology) Na Kyong Kim (Chonnam National University) Hyun Wook Kang (Chonnam National University)
저널정보
대한환경공학회 Environmental Engineering Research Environmental Engineering Research 제28권 제4호
발행연도
2023.8
수록면
119 - 134 (16page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
A thermal catalytic device that reduces the energy required for the catalytic oxidation of volatile organic compounds (VOCs) was developed. The catalytic oxidation of VOCs is typically performed under indirect heating conditions resulting in high energy consumption. The proposed device drastically decreases the energy consumed and increases the amount of toluene decomposed during catalytic oxidation because the catalysts are heated directly via a carbon nanotube (CNT) element. The proposed device consists of a glass-fiber textile coated in CNTs, α-MnO₂ nanostructures, and Pt nanostructures. The effect of different α-MnO₂ nanostructures (granular and urchin-like) on device performance was investigated. Moreover, the effect of each device component on the toluene decomposition efficiency and energy consumption of the device was explored by determining the toluene concentration of gaseous toluene after the catalytic oxidation process and the associated energy consumption. The device featuring urchin-like α-MnO₂ nanostructures coated in a thin layer of Pt achieves higher toluene decomposition efficiency than the device featuring granular α-MnO₂ nanostructures coated in Pt nanoparticles. Moreover, the device featuring urchin-like α-MnO₂ nanostructures coated in a thin Pt layer achieves higher toluene decomposition efficiency and lower energy consumption under direct heating conditions than under conventional indirect heating conditions.

목차

ABSTRACT
1. Introduction
2. Experimental Section
3. Results and Discussion
4. Compositions
5. Conclusions
Reference

참고문헌 (41)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0