메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술대회자료
저자정보
Jongyong Do (Korea Advanced Institute of Science and Technology) Kyoungseok Han (Kyungpook National University) Seibum B. Choi (Korea Advanced Institute of Science and Technology)
저널정보
제어로봇시스템학회 제어로봇시스템학회 국제학술대회 논문집 ICCAS 2022
발행연도
2022.11
수록면
366 - 372 (7page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
One of the most critical topics in vehicle active safety control is collision avoidance(CA) maneuver. To ensure the robustness of the CA, it is essential to recognize the behavior of surrounding vehicles accurately. In particular, a safer path can be generated, if the intention of changing lanes of surrounding vehicles can be predicted. Existing studies on lane change intention prediction are primarily based on machine learning, and it is difficult to respond to unexpected situations that have not been learned. In this study, a method for predicting lane change intention in real time based on the trajectory of surrounding vehicles is presented. It is assumed that the location of the lane is known through the map, and the global coordinate system is transformed into the Frenet coordinate system to maintain generality regardless of the curvature of the road. And the paths that the target vehicle can travel are modeled as cubic spline curves on the Frenet coordinate system. Through the multiple model estimator, which operates the path models in parallel, it finds the most probable path and predicts the lane change intention. The performance of the lane change intention prediction algorithm is verified through highD, a German highway vehicle trajectories dataset.

목차

Abstract
1. INTRODUCTION
2. COORDINATE TRANSFORMATION AND PATH MODELING
3. LANE CHANGE INTENTION INFERENCE
4. TEST RESULTS
5. CONCLUSION
REFERENCES

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0