메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술대회자료
저자정보
Juyoung Hong (Sejong University) Yujin Hwang (Sejong University) Gwangjin Lee (Sejong University) Yukyung Choi (Sejong University)
저널정보
제어로봇시스템학회 제어로봇시스템학회 국제학술대회 논문집 ICCAS 2022
발행연도
2022.11
수록면
1,173 - 1,178 (6page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
The social robots market has grown in recent years owing to advancements in robotics. Accordingly, there is a growing interest in emotion recognition technology, one of the fundamental technologies of social robots. Early research in emotion recognition predicted emotions into a Facial Action Coding System (FACS) that recognizes facial expressions by analyzing action units (AU), the fundamental action components of face muscles. However, with the advent of deep learning, models can now recognize facial emotions straight from images. For industry application of this deep learning based emotion recognition approach, supervised learning are usually applied, and this model training approach is highly dependent on training datasets. This survey gives an overview of datasets that can be used when the emotion recognition model is implemented. This paper focused on identifying the availability of datasets relevant to the elderly and children, the primary goals of social robots, as well as reviewing the data collection and annotation processes. This survey sheds insight on the current status of emotion datasets and presents suggestions for future development.

목차

Abstract
1. INTRODUCTION
2. DATABASE OF WIDE RANGE OF AGES GROUPS
3. DATABASE OF SPECIFIC AGE GROUPS
4. ANALYSIS
5. CONCLUSION
REFERENCES

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0