메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색

논문 기본 정보

자료유형
학술저널
저자정보
Wei Zonglan (Paul Scherrer Institute) Ničeno Bojan (Paul Scherrer Institute) Puragliesi Riccardo (University of Applied Sciences and Arts of Southern Switzerland) Fogliatto Ezequiel (Paul Scherrer Institute)
저널정보
한국원자력학회 Nuclear Engineering and Technology Nuclear Engineering and Technology 제54권 제11호
발행연도
2022.11
수록면
4,359 - 4,372 (14page)
DOI
10.1016/j.net.2022.07.009

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색

초록· 키워드

오류제보하기
Turbulent mixing in buoyant flows is an essential mechanism involved in many scenarios related to nuclear safety in nuclear power plants. Comprehensive understanding and accurate predictions of turbulent buoyant flows in the reactor are of crucial importance, due to the function of mitigating the potential detrimental consequences during postulated accidents. The present study uses URANS methodology to investigate the buoyancy-influenced flows in the reactor pressure vessel under the main steam line break accident scenarios. With a particular focus on the influence of turbulent heat flux closure models, various combinations of two turbulence models and three turbulent heat flux models are utilized for the numerical simulations of three ROCOM tests which have different characteristic features in terms of the flow rate and fluid density difference between loops. The simulation results are compared with experimental measurements of the so-called mixing scalar in the downcomer and at the core inlet. The study shows that the anisotropic turbulent heat flux models are able to improve the accuracy of the predictions under conditions of strong buoyancy whilst in the weak buoyancy case, a major role is played by the selected turbulence models with essentially a negligible influence of the turbulent heat flux closure models

목차

등록된 정보가 없습니다.

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0