메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색

논문 기본 정보

자료유형
학술저널
저자정보
Yingchun Jiang (Guilin University of Electronic Technology) Junjian Zhao (TianGong University)
저널정보
대한수학회 대한수학회보 대한수학회보 제59권 제2호
발행연도
2022.3
수록면
285 - 301 (17page)
DOI
10.4134/BKMS.b200916

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색

초록· 키워드

오류제보하기
In this paper, we mainly study the random sampling and reconstruction of signals living in the subspace $V^p(\Phi,\Lambda)$ of $L^p(\mathbb{R}^d)$, which is generated by a family of molecules $\Phi$ located on a relatively separated subset $\Lambda\subset \mathbb{R}^d$. The space $V^p(\Phi,\Lambda)$ is used to model signals with finite rate of innovation, such as stream of pulses in GPS applications, cellular radio and ultra wide-band communication. The sampling set is independently and randomly drawn from a general probability distribution over $\mathbb{R}^d$. Under some proper conditions for the generators $\Phi=\{\phi_\lambda:\lambda\in \Lambda\}$ and the probability density function $\rho$, we first approximate $V^{p}(\Phi,\Lambda)$ by a finite dimensional subspace $V^{p}_N(\Phi,\Lambda)$ on any bounded domains. Then, we prove that the random sampling stability holds with high probability for all signals in $V^{p}(\Phi,\Lambda)$ whose energy concentrate on a cube when the sampling size is large enough. Finally, a reconstruction algorithm based on random samples is given for signals in $V^{p}_N(\Phi,\Lambda)$.

목차

등록된 정보가 없습니다.

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0