메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색

논문 기본 정보

자료유형
학술저널
저자정보
이준호 (목포대학교)
저널정보
대한수학회 대한수학회보 대한수학회보 제59권 제3호
발행연도
2022.5
수록면
697 - 707 (11page)
DOI
10.4134/BKMS.b210422

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색

초록· 키워드

오류제보하기
It is well known that the continued fraction expansion of $\sqrt{d}$ has the form $[a_0, \overline{a_1, \ldots, a_{l-1}, 2a_0}]$ and $a_1, \ldots, a_{l-1}$ is a palindromic sequence of positive integers. For a given positive integer $l$ and a palindromic sequence of positive integers $a_1, \ldots, a_{l-1}$, we define the set $S(l;a_1,$ $\ldots, a_{l-1}) :=\{d\in \mathbb{Z} \,| \, d>0, \sqrt{d}=[a_0, \overline{a_1, \ldots, a_{l-1}, 2a_0}], \, \textup{where} \, a_0=\lfloor \sqrt{d} \rfloor\}$. In this paper, we completely determine when $S(l;a_1, \ldots, a_{l-1})$ is not empty in the case that $l$ is $4$, $5$, $6$, or $7$. We also give similar results for $(1+\sqrt{d})/2$. For the case that $l$ is $4$, $5$, or $6$, we explicitly describe the fundamental units of the real quadratic field $\mathbb{Q}(\sqrt{d})$. Finally, we apply our results to the Mordell conjecture for the fundamental units of $\mathbb{Q}(\sqrt{d})$.

목차

등록된 정보가 없습니다.

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0