메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색

논문 기본 정보

자료유형
학술저널
저자정보
Shaoting Xie (Nanchang University) Jiandong Yin (Nanchang University)
저널정보
대한수학회 대한수학회지 대한수학회지 제59권 제6호
발행연도
2022.11
수록면
1,229 - 1,254 (26page)
DOI
10.4134/JKMS.j220202

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색

초록· 키워드

오류제보하기
In this paper, we introduce the concepts of (quasi-)weakly almost periodic point and minimal center of attraction for $\mathbb{Z}^d_+$-actions, explore the connections of levels of the topological structure the orbits of (quasi-)weakly almost periodic points and discuss the relations between (quasi-)weakly almost periodic point and minimal center of attraction. Especially, we investigate the chaotic dynamics near or inside the minimal center of attraction of a point in the cases of $S$-generic setting and non $S$-generic setting, respectively. Actually, we show that weakly almost periodic points and quasi-weakly almost periodic points have distinct topological structures of the orbits and we prove that if the minimal center of attraction of a point is non $S$-generic, then there exist certain Li-Yorke chaotic properties inside the involved minimal center of attraction and sensitivity near the involved minimal center of attraction; if the minimal center of attraction of a point is $S$-generic, then there exist stronger Li-Yorke chaotic (Auslander-Yorke chaotic) dynamics and sensitivity ($\aleph_0$-sensitivity) in the involved minimal center of attraction.

목차

등록된 정보가 없습니다.

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0