메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색

논문 기본 정보

자료유형
학술저널
저자정보
Kim Jeoung Kun (Department of Business Administration School of Business Yeungnam University Gyeongsan Korea.) Choo Yoo Jin (Department of Rehabilitation Medicine College of Medicine Yeungnam University Daegu Korea.) Choi Gyu Sang (Department of Information and Communication Engineering Yeungnam University Gyeongsan Korea.) Shin Hyunkwang (Department of Information and Communication Engineering Yeungnam University Gyeongsan Korea.) Chang Min Cheol (Department of Rehabilitation Medicine College of Medicine Yeungnam University Daegu Korea.) Park Donghwi (Department of Physical Medicine and Rehabilitation Ulsan University Hospital University of Ulsan Co)
저널정보
대한의학회 Journal of Korean Medical Science Journal of Korean Medical Science Vol.37 No.6
발행연도
2022.2
수록면
1 - 8 (8page)
DOI
10.3346/jkms.2022.37.e42

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색

초록· 키워드

오류제보하기
Background: Videofluoroscopic swallowing study (VFSS) is currently considered the gold standard to precisely diagnose and quantitatively investigate dysphagia. However, VFSS interpretation is complex and requires consideration of several factors. Therefore, considering the expected impact on dysphagia management, this study aimed to apply deep learning to detect the presence of penetration or aspiration in VFSS of patients with dysphagia automatically. Methods: The VFSS data of 190 participants with dysphagia were collected. A total of 10 frame images from one swallowing process were selected (five high-peak images and five low-peak images) for the application of deep learning in a VFSS video of a patient with dysphagia. We applied a convolutional neural network (CNN) for deep learning using the Python programming language. For the classification of VFSS findings (normal swallowing, penetration, and aspiration), the classification was determined in both high-peak and lowpeak images. Thereafter, the two classifications determined through high-peak and low-peak images were integrated into a final classification. Results: The area under the curve (AUC) for the validation dataset of the VFSS image for the CNN model was 0.942 for normal findings, 0.878 for penetration, and 1.000 for aspiration. The macro average AUC was 0.940 and micro average AUC was 0.961. Conclusion: This study demonstrated that deep learning algorithms, particularly the CNN, could be applied for detecting the presence of penetration and aspiration in VFSS of patients with dysphagia.

목차

등록된 정보가 없습니다.

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0