메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색

논문 기본 정보

자료유형
학술저널
저자정보
Seung-Hwa Lee (Sungkyunkwan University School of Medicine) Jungchan Park (Sungkyunkwan University School of Medicine) Kwangmo Yang (Sungkyunkwan University School of Medicine) Jeongwon Min (Seoul National University) Jinwook Choi (Seoul National University College of Medicine)
저널정보
대한의학회 Journal of Korean Medical Science Journal of Korean Medical Science Vol.37 No.18
발행연도
2022.5
수록면
1 - 9 (9page)
DOI
10.3346/jkms.2022.37.e144

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색

초록· 키워드

오류제보하기
Background: There are limited data on the accuracy of cloud-based speech recognition (SR) open application programming interfaces (APIs) for medical terminology. This study aimed to evaluate the medical term recognition accuracy of current available cloud-based SR open APIs in Korean. Methods: We analyzed the SR accuracy of currently available cloud-based SR open APIs using real doctor?patient conversation recordings collected from an outpatient clinic at a large tertiary medical center in Korea. For each original and SR transcription, we analyzed the accuracy rate of each cloud-based SR open API (i.e., the number of medical terms in the SR transcription per number of medical terms in the original transcription). Results: A total of 112 doctor?patient conversation recordings were converted with three cloud-based SR open APIs (Naver Clova SR from Naver Corporation; Google Speech-toText from Alphabet Inc.; and Amazon Transcribe from Amazon), and each transcription was compared. Naver Clova SR (75.1%) showed the highest accuracy with the recognition of medical terms compared to the other open APIs (Google Speech-to-Text, 50.9%, P < 0.001; Amazon Transcribe, 57.9%, P < 0.001), and Amazon Transcribe demonstrated higher recognition accuracy compared to Google Speech-to-Text (P < 0.001). In the sub-analysis, Naver Clova SR showed the highest accuracy in all areas according to word classes, but the accuracy of words longer than five characters showed no statistical differences (Naver Clova SR, 52.6%; Google Speech-to-Text, 56.3%; Amazon Transcribe, 36.6%). Conclusion: Among three current cloud-based SR open APIs, Naver Clova SR which manufactured by Korean company showed highest accuracy of medical terms in Korean, compared to Google Speech-to-Text and Amazon Transcribe. Although limitations are existing in the recognition of medical terminology, there is a lot of rooms for improvement of this promising technology by combining strengths of each SR engines.

목차

등록된 정보가 없습니다.

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0