메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색

논문 기본 정보

자료유형
학술저널
저자정보
정하규 (국립재난안전연구원 재난정보연구실) 박종수 (국립재난안전연구원) 이달근 (국립재난안전연구원) 이준우 (국립재난안전연구원)
저널정보
대한원격탐사학회 대한원격탐사학회지 대한원격탐사학회지 제38권 제6호
발행연도
2022.12
수록면
1,777 - 1,788 (12page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색

초록· 키워드

오류제보하기
저수지는 국내 영농환경에서 주요한 용수 공급처이며, 저수지의 저수량 파악은 농업용수의 활용 및 관리차원에서 중요하다. 위성영상을 활용한 원격탐사는 저수지와 같이 광역적으로 분포하는 객체에 대하여 정기적인 모니터링을 할 수 있는 효과적인 수단으로, 본 연구에서는 Sentinel-1 Synthetic Aperture Radar (SAR) 영상을 통해 영상분류 및 영상분할 알고리즘을 적용하여 국내 저수지 53개소의 수표면적 탐지를 수행하였다.사용한 알고리즘은 Neural Network (NN), Support Vector Machine (SVM), Random Forest (RF), Otsu, Watershed(WS), Chan-Vese (CV)로 총 6가지이며, 드론으로 촬영한 실측 정사영상으로 수표면적 탐지 결과를 평가하였다.각 알고리즘으로부터 산출된 수표면적과 실측 수표면적간의 상관성은 NN 0.9941, SVM 0.9942, RF 0.9940, Otsu0.9922, WS 0.9709, CV 0.9736로 나타났으며, 저수지 유효저수량의 규모가 클수록 더 높은 선형 상관관계를 보였다. 혼동 행렬로부터 산출한 정확도, 정밀도, 재현율을 통해 알고리즘간 수표면적 탐지 정확도와 탐지 경향을 분석하였다. 정확도의 경우 각 10만 m3 미만 저수지에서 WS가 0.8752, 10만~30만 m3에서 Otsu가 0.8845, 30만~50만 m3에서 RF가 0.9100, 50만 m3 이상에서 Otsu와 CV가 0.9400으로 가장 높은 수치를 보였다. WS의 경우수표면적을 미탐지하는 경향으로 인해 낮은 재현율을 보였고, NN, SVM, RF의 경우 과대 탐지로 인한 낮은 정밀도를 보였다. SAR 영상을 통한 수표면적 탐지 시 저수지 수표면의 수생식물 및 인공건축물이 미탐지를 발생시키는 오차 요소로 작용함을 분석결과 및 실측영상을 통해 확인하였다.

목차

등록된 정보가 없습니다.

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0