메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색

논문 기본 정보

자료유형
학술저널
저자정보
정윤선 (서울대학교) 우정웅 (스탠포드대학교) 이준기 (서울대학교)
저널정보
한국지질과학협의회 Geosciences Journal Geosciences Journal Vol.26 No.4
발행연도
2022.8
수록면
499 - 511 (13page)
DOI
10.1007/s12303-021-0043-1

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색

초록· 키워드

오류제보하기
As a fundamental task in observational seismology, accurate hypocenter determination is crucial for seismic hazard analysis, delineating faults, and elucidating seismic source characteristics. However, hypocenters determined using an inaccurate velocity model can exhibit significant deviations from the actual hypocenter. In this study, we investigated how a 3-D velocity model results in a better constraint than a 1-D model for the hypocenter determination problem associated with the 2017 MW 5.5 Pohang earthquake. This study determined the hypocenter of the Pohang earthquake sequence using a 3-D velocity model of 32 events including the mainshock that occurred on November 15, 2017, in South Korea. The S wave velocity model, based on an ambient noise tomography, was combined with the average Vp/Vs ratio of the crust of the Korean Peninsula to construct a 3-D velocity model; additional 1-D velocity model was used to compare the results. The hypocenters were determined via a nonlinear method, which allowed the calculation of the posterior probability density of the source via a direct search method, confirming that the accuracy improved when using the 3-D model compared with the 1-D model. We observed that our 3-D velocity model enables hypocenters to be consistently determined, less affected by station configuration, or a lack of adjacent seismic stations. Further numerical investigation showed that complex basin geometry and the heterogeneity of the crustal thickness, which cannot be considered in 1-D model, are critical for hypocenter determination.

목차

등록된 정보가 없습니다.

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0