메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색

논문 기본 정보

자료유형
학술저널
저자정보
장현식 (강원대학교) 백인준 (강원대학교) 송재용 ((주)산하이앤씨) 이근춘 ((주)산하이앤씨) 장보안 (강원대학교)
저널정보
한국지질과학협의회 Geosciences Journal Geosciences Journal Vol.26 No.6
발행연도
2022.12
수록면
731 - 747 (17page)
DOI
10.1007/s12303-022-0020-3

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색

초록· 키워드

오류제보하기
Plasma blasting by high-voltage arc discharge was performed in laboratory-scale soil samples to investigate fluid penetration. A plasma blasting device with a large-capacity capacitor and columnar soil samples with a diameter of 80 cm and a height of 60 cm were prepared. The columnar soil samples were made of sand and silt mixed in a 7:3 ratio (the A samples) or a 9:1 ratio (the B samples). When fluid was injected by pressure without plasma blasting, fluid penetrated into the soil only near the borehole, and the penetration area ratio was less than 10%. In further tests, fluid was injected by plasma blasting with different discharge energies of 1–27 kJ. When plasma blasting was performed once in the A samples, the penetration area ratios of the fluid were 16–25%; after five consecutive blasts, the penetration area ratios were 30–48%. When five consecutive plasma blasts were carried out on the B samples, the fluid penetration area ratios were 33–72%. This difference indicates that the fluid penetration area increases with higher discharge energy of plasma blasting and with a greater number of blasts. The fluid penetration radius was calculated to assess the fluid penetration volume. When the fluid was injected by hydraulic pressure only, the penetration radius was 9–12.4 cm, whereas the penetration radius was 27–33.2 cm when blasting was performed five times. The radius was increased by up to 200% by plasma blasting. In the field tests, the fluid injection in the test hole subjected to plasma blasting was greater by about 170% compared with the control test hole, in which the fluid was injected only by hydraulic pressure. In addition, the electrical resistivity around the test hole subjected to plasma blasting was markedly lower, and fluid diffused from this test hole to a minimum radius of 2 m. These results indicate that a cleaning agent will penetrate further and the remediation efficiency of contaminated soil will be improved if plasma blasting is applied for in situ cleaning of low-permeability contaminated soil.

목차

등록된 정보가 없습니다.

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0