메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색

논문 기본 정보

자료유형
학술저널
저자정보
김윤지 (선박해양플랜트연구소) 오세웅 (선박해양플랜트연구소 해양안전환경연구부) 전민수 (IALA)
저널정보
한국항해항만학회 한국항해항만학회지 한국항해항만학회지 제46권 제5호
발행연도
2022.10
수록면
409 - 418 (10page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색

초록· 키워드

오류제보하기
The International Association of Lighthouse Authorities (IALA) utilizes a questionnaire to investigate the status of Aids to Navigation (AtoN) around the world. However, results of the IALA questionnaire have limited use because respondent understanding is inconsistent. In addition, there is uncertainty regarding the appropriateness of the questionnaire content. Furthermore, the overall response rate is low. Therefore, the status of AtoN is not clearly understood. AtoN data from around the world are generated hourly. Thus, big data solutions are required to effectively exploit the information. Digitization of analog data is an important component of building big data. Hence, the IALA has developed a Maritime Resource Name (MRN) scheme and an information exchange standard. Here, we used the AtoN information exchange standard and designed an S-201-based big data construction process that could collect and manage global AtoN information. In this study, construction of an IALA AtoN portal was proposed as the core of the construction of the AtoN big data. The process was divided into three stages. IALA AtoN portal is developed by IALA with the goal to provide various meaningful statistical analysis results based on AtoN data while managing AtoN information around the world based on S-201. If an AtoN portal capable of constructing S-201-based big data is developed, then a data collection and storage system that can gather basic S-201 AtoN data from the IALA and global AtoN management agencies could be achieved. Furthermore, insightful statistical analysis of AtoN status worldwide and changes in manufacturing technology will be possible.

목차

등록된 정보가 없습니다.

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0