메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색

논문 기본 정보

자료유형
학술저널
저자정보
Jong‑Hwa Hong (Seoul National University) Hyunki Kim (Hyundai Motor Company & Kia Motors Corporation) Wonjae Kim (Samsung Electronics) Yong‑Nam Kwon (Korea Institute of Materials Science) Daeyong Kim (Korea Institute of Materials Science)
저널정보
대한금속·재료학회 Metals and Materials International Metals and Materials International Vol.28 No.4
발행연도
2022.4
수록면
871 - 886 (16page)
DOI
10.1007/s12540-020-00949-6

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색

초록· 키워드

오류제보하기
In this work, the onset of failure induced by severe strain at elevated temperature was numerically estimated with crossformedempirical hardening law describing material softening. The hardening law can replicate the rate-sensitive behaviorof aluminum alloy 7075 sheets (thickness of 2.0 mm) with initial hardening and progressive material deterioration causedby dynamic recrystallization, dynamic recovery, and micro-void development. The characterized material was applied to thetwo-step hybrid forming process consisting of a drawing at 400 °C followed by a pneumatic forming at 470 °C to produce ashock absorber housing with an extremely complex shape. The user-defined subroutine codes, VUMAT (ABAQUS/Explicit)and UMAT (ABAQUS/Standard), were sequentially utilized for the drawing and the pneumatic forming, respectively. Theidentified hardening parameters based on uniaxial tensile tests were validated by simulating the two-step hybrid formingprocess and compared with the conventional Voce type law (converging function) and the combined Swift-Voce type law(ever-increasing function) since they play a key role in accurately predicting the onset of failure induced by severe strainlocalization. Finally, simulation results are reasonably well matched with experiments in terms of the moment of failureoccurrence, failure location, final blank shape, and thickness distribution.

목차

등록된 정보가 없습니다.

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0