메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색

논문 기본 정보

자료유형
학술저널
저자정보
Amir Yazdanmehr (University of Waterloo) Ali A. Roostaei (University of Waterloo) Hamid Jahed (University of Waterloo)
저널정보
대한금속·재료학회 Metals and Materials International Metals and Materials International Vol.28 No.10
발행연도
2022.10
수록면
2,395 - 2,412 (18page)
DOI
10.1007/s12540-021-01141-0

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색

초록· 키워드

오류제보하기
Shot peening process can induce beneficial compressive residual stresses and thereby enhance fatigue properties of magnesiumalloy sheets. Fully analytical and numerical (finite element) models have been commonly employed to provide a lowcostestimation of residual stresses induced by the shot peening. In the fully analytical method, stringent assumptions madeto allow for closed-form analytical solutions, lead to ignoring friction and strain rate effects. Employing the fully numericalmethod for magnesium alloys, on the other hand, is not a straightforward task, due to magnesium complex unloadingresponse. Moreover, finite element modelling of a full-coverage shot peening condition is both time-consuming and computationallyexpensive. A single-shot finite element model is herein combined with a full-coverage analytical approach usingactual asymmetric loading–unloading material behaviour to propose a hybrid numerical-analytical model for prediction ofthe residual stress distribution in a shot-peened AZ31B-H24 rolled sheet. The proposed hybrid model can take into accountthe actual material behaviour, actual elastic–plastic contact analysis, friction, and strain rate effects. Predicted through-depthresidual stress distributions are found to be in good agreement with experimental stress measurements, via x-ray diffractionand hole drilling methods, under various peening conditions.

목차

등록된 정보가 없습니다.

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0