메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색

논문 기본 정보

자료유형
학술저널
저자정보
김민선 (홍익대) 김진영 (홍익대)
저널정보
한국패션비즈니스학회 패션 비즈니스 패션 비즈니스 제26권 제1호
발행연도
2022.2
수록면
1 - 15 (15page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색

초록· 키워드

오류제보하기
Digital transformation has induced changes in human life patterns; consumption patterns are also changing to digitalization. Entering the era of industry 4.0 with the 4th industrial revolution, it is important to pay attention to a new paradigm in the fashion industry, the shift from developer-centered to user-centered in the era of the 3rd industrial revolution. The meaning of storing users' changing life and consumption patterns and analyzing stored big data are linked to consumer sentiment. It is more valuable to read emotions, then develop and distribute products based on them, rather than developer-centered processes that previously started in the fashion market. An AI(Artificial Intelligence) deep learning algorithm that analyzes user emotion big data from user experience(UX) to emotion and uses the analyzed data as a source has become possible. By combining AI technology, the fashion industry can develop various new products and technologies that meet the functional and emotional aspects required by consumers and expect a sustainable user experience structure. This study analyzes clear and useful user experience in the fashion industry to derive the characteristics of AI algorithms that combine emotions and technologies reflecting users' needs and proposes methods that can be used in the fashion industry. The purpose of the study is to utilize information analysis using big data and AI algorithms so that structures that can interact with users and developers can lead to a sustainable ecosystem. Ultimately, it is meaningful to identify the direction of the optimized fashion industry through user experienced emotional fashion technology algorithms.

목차

등록된 정보가 없습니다.

참고문헌 (28)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0