메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색

논문 기본 정보

자료유형
학술저널
저자정보
현민경 (동국대학교) Tetsuhiro Yoshino (Keio University School of Medicine)
저널정보
대한예방한의학회 대한예방한의학회지 대한예방한의학회지 제26권 제1호
발행연도
2022.4
수록면
59 - 74 (16page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색

초록· 키워드

오류제보하기
Objectives : Evidence supporting the cold-heat symptom and sasang constitution type, which are diagnostic items of traditional Korean medicine, is needed to manage sleep disturbances, which is a typical symptom of mibyeong (subhealth). This study examined the association between each cold-heat symptom and sleep disturbances according to each sasang constitution type. Methods : This research was a cross-sectional study of 5,793 subjects from the Korean Medicine Data Center (KDC) community cohort survey. The association between each cold-heat symptom and sleep disturbances was analyzed by logistic regression analysis adjusted for several demographic variables. Subgroup analysis was then performed for each type of sasang constitution. Results : The soeum and soyang types were 1.53 and 1.26 times more likely to have sleep disturbances than the taeum type. Sleep disturbances were associated with ‘coldness of the abdomen’, ‘watery mouth’ in the cold domain items, and ‘body feverishness’, ‘flushed face and eye’, ‘thirst’, and ‘scanty dark urine’ in the heat domain items. The soeum and soyang types were 1.55 and 1.39 times more likely to sleep less than five hours per night than the taeeum type. In addition, the associations of those showed a different pattern for each sasang constitution type. Conclusions : Sleep disturbances are associated with specific cold-heat symptoms, and the associated coldheat symptoms differ according to the sasang constitution type. These results may help traditional medicine specialists select customized interventions for patients with sleep disturbances.

목차

등록된 정보가 없습니다.

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0