메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색

논문 기본 정보

자료유형
학술저널
저자정보
JINGJIE SU (전남대학교) 김강철 (전남대학교)
저널정보
한국전자통신학회 한국전자통신학회 논문지 한국전자통신학회 논문지 제17권 제3호
발행연도
2022.6
수록면
529 - 536 (8page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색

초록· 키워드

오류제보하기
지난 2년 동안 중증급성호흡기증후군 코로나바이러스-2(SARS-CoV-2)는 점점 더 많은 사람들에게 영향을 미치고 있다. 본 논문에서는 COVID19 폐 CT 이미지를 분할하고 분류하기 위해서 서브코딩블록(SCB), 확장공간파라미드풀링(ASSP)와 어텐션게이트(AG)로 구성된 혼합 모드 특징 추출 방식의 새로운 U-Net 컨볼루션 신경망(U-Net-MMFE)을 제안한다. 그리고 제안된 모델과 비교하기 위하여 FCN, U-Net, U-Net-SCB 모델을 설계한다. 제안된 U-Net-MMFE는 COVID-19 CT 스캔 디지털 이미지 데이터에 대하여 Atrous rate가 12이고, Adam 최적화 알고리즘을 사용할 때 다른 분할 모델에 비하여 94.79%의 우수한 주사위 분할 점수를 얻었다.

목차

등록된 정보가 없습니다.

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0