메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색

논문 기본 정보

자료유형
학술저널
저자정보
김유진 (홍익대학교) 윤영 (홍익대학교)
저널정보
한국융합학회 한국융합학회논문지 한국융합학회논문지 제13권 제1호
발행연도
2022.1
수록면
51 - 62 (12page)
DOI
https://doi.org/10.15207/JKCS.2022.13.01.051

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색

초록· 키워드

오류제보하기
교통 혼잡을 해결하기 위한 AI 기반 속도 예측 연구는 활발하게 진행되고 있다. 하지만, 인공지능의 추론 과정을 설명하는 설명 가능한 AI의 중요성이 대두되고 있는 가운데 AI 기반 속도 예측의 결과를 해석하고 원인을 추리하는 연구는 미흡하였다. 따라서 본 논문에서는 `설명 가능 그래프 심층 인공신경망 (GNN)`을 고안하여 속도 예측뿐만 아니라, GNN 모델 입력값의 마스킹 기법에 기반하여 인근 도로 영향력을 정량적으로 분석함으로써 혼잡 등의 상황에 대한 추론 근거를 도출하였다. TOPIS 통행 속도 데이터를 활용하여 서울 시내 혼잡 도로를 기준으로 예측 및 분석 방법론을 적용한 후 영향력 높은 인근 도로의 속도를 가상으로 조절하는 시뮬레이션 통하여 혼잡 도로의 통행 속도가 개선됨을 확인하여 제안한 방법론의 타당성을 입증하였다. 이는 교통 네트워크에 제안한 방법론을 적용하고, 그 추론 결과에 기반한 특정 인근 도로를 제어하여 교통 흐름을 개선할 수 있다는 점에 의미가 있다.

목차

등록된 정보가 없습니다.

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0