메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색

논문 기본 정보

자료유형
학술저널
저자정보
김희두 (고려대학교 빅데이터융합학과 석사과정) 임희석 (고려대학교)
저널정보
한국융합학회 한국융합학회논문지 한국융합학회논문지 제13권 제2호
발행연도
2022.2
수록면
13 - 20 (8page)
DOI
https://doi.org/10.15207/JKCS.2022.13.02.013

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색

초록· 키워드

오류제보하기
본 연구는 딥러닝 기법을 활용하여 범죄 수사 도메인에 특화된 개체명 인식 모델을 개발하는 연구이다. 본 연구를 통해 비정형의 형사 판결문·수사 문서와 같은 텍스트 기반의 데이터에서 자동으로 범죄 수법과 범죄 관련 정보를 추출하고 유형화하여, 향후 데이터 분석기법을 활용한 범죄 예방 분석과 수사에 기여할 수 있는 시스템을 제안한다. 본 연구에서는 범죄 수사 도메인 텍스트를 수집하고 범죄 분석의 관점에서 필요한 개체명 분류를 새로 정의하였다. 또한 최근 자연어 처리에서 높은 성능을 보이고 있는 사전학습 언어모델인 KoELECTRA를 적용한 제안 모델은 본 연구에서 정의한 범죄 도메인 개체명 실험 데이터의 9종의 메인 카테고리 분류에서 micro average(이하 micro avg) F1-score 99%, macro average(이하 macro avg) F1-score 96%의 성능을 보이고, 56종의 서브 카테고리 분류에서 micro avg F1-score 98%, macro avg F1-score 62%의 성능을 보인다. 제안한 모델을 통해 향후 개선 가능성과 활용 가능성의 관점에서 분석한다.

목차

등록된 정보가 없습니다.

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0